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ABSTRACT.     A method for calculating the incompressible 
turbulent boundary layer based on the  "law of the wall" and 
Coles'  "law of the wake" is presented.     The method is ap- 
plicable to two-dimensional bodies and to bodies of revolu- 
tion in axisymmetric  flow when the boundary-layer thickness 
is not necessarily small compared to the body radius.    The 
carrying out of this method involves a  simultaneous  solution 
of the momentum integral equation and the energy integral 
equation,   assuming that the mean velocity profiles are given 
by a universal two-parameter  representation as  suggested 
1 y Coles. 

Since these two-parameter,   mean velocity profiles inher- 
ently contain sufficient information to determine the  shear 
stress at the wall and the rate of energy dissipation in the 
boundary layer,   and accurately  represent velocity profiles 
to the point of separation,   it is anticipated that there will 
result an improved technique for estimating the growth of 
a turbulent boundary layer which may be valid to the point 
of separation. 
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This  report presents the theoretical development of a 
method for calculating the incompressible turbulent boundary- 
layer based on the  "law of the wall" and the  "law of the wake." 
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NOMENCLATURE 

A Profile parameter (Eq. 13) 

C An empirical constant in the "law of the wall" (Eq. 4) 

e Unit vector 

G Shape parameter   (Eq . 7) 

h Scale factor 

Hr Thickness ratio,   6r/0r 

Hr Thickness ratio,   6?*/9r 

K Curvature of body surface in plane of mean flow 

I Mixing length 

Li A length defined by Eq. 27 

m Numerical constant equal to 2.75 

n Numerical constant equal to 2.50 

Nj_3g Numerical constants (see Appendix) 

O Order of magnitude 

p Static pressure   of   the   fluid 

"p Mean static pressure 

p' Fluctuation static pressure 

r Radial coordinate (Fig. 3) 

r0 Body radius 

Re Reynolds number 

u, v, w Components of fluid velocity in direction of increasing 
x,   y, V ,   respectively 

u, "v, w Mean values of fluid velocity components 

u', v', w' Fluctuation values of fluid velocity components 

U Fluid velocity at edge of boundary 

U0 Undisturbed free-stream velocity 

v» ^T0/p 

V Velocity of fluid 

W(y/6) "Law of the wake" function 
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y, Y      Orthogonal curvilinear coordinates (Fig. 3) 

X       A length used to define a Reynolds number 

ß Angle between tangent to body surface and axis of symmetry 

6 Boundary-layer thickness 

6C See discussion,   page  11 

6* Displacement thickness 

6r       Pseudo-displacement thickness for   l/r0 / 0; displacement 
thickness for  l/r0 = 0 

6r Pseudo-energy thickness for l/r0 / 0; energy thickness 
for l/r0 = 0 

A       Turbulent thickness  (Eq. 6) 

6       Momentum thickness 

6r      Pseudo-momentum thickness for  l/r0 / 0; momentum 
thickness for  l/r0 = 0 

«       Proportionality between mixing length and distance from 
the wall 

v Kinematic viscosity 

11 Profile parameter (Eq. 5) 

p Fluid density 

T Shear stress 

T0 Shear stress at the wall 

T. Laminar shear  stress 

T«. Turbulent shear stress 
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INTRODUCTION 

Coles' boundary-layer investigations (Ref. 1)  showed that the two- 
dimensional,  incompressible,  turbulent boundary-layer,   mean velocity 
profiles in the whole range from transition to separation closely ap- 
proximate a two-parameter family.     This fact suggests the possibility 
of using these profiles in place of the more common power-law   pro- 
files1 in computing the development of the turbulent boundary layer. 
Such a method might be expected to yield  satisfactory results up to the 
point of separation,   whereas power-law profile methods tend to break 
down near separation partly because at this point the mean velocity 
profiles cannot be accurately approximated by a power law. 

Since one of the parameters governing the two-parameter family is 
v* = "^T0/p,   the  shear stress at the wall is specified once the mean 
velocity profile is  specified.    Hence,   a method that uses these two- 
parameter velocity profiles would not have to make use of an approxi- 
mate expression,  such as a fist-plate formula, for the shear at the wall. 
These profiles also allow the rate at which energy is dissipated in the 
boundary layer to be calculated.     In general,   their use permits a more 
rigorous approach to the boundary-layer solution.    Furthermore,   an 
investigation based on available experimental data (detailed below) in- 
dicates that the mean velocity profiles on bodies of revolution in axi- 
symmetric flow also fall reasonably well within this two-parameter 
family so  that   such   a method may be applied almost equally well to a 
body in axisymmetric flow. 

Using Coles' two-parameter velocity profile family as a starting 
point,   the method presented here for determining the incompressible 
turbulent boundary layer on two-dimensional bodies and bodies of rev- 
olution in axisymmetric flow was undertaken.     Since the equations 
governing the axisymmetric flow about a body of revolution reduce to 
those for the flow over a two-dimensional body as r0 -► oo (r0 = body 
radius),  only the axisymmetric development is given.     By setting 
l/r0 = 0 at any point in the axisymmetric development,  the equivalent 
two-dimensional result is obtained. 

Power-law profiles are of the form u/U = (y/6)   • 
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t 
jf HISTORICAL REVIEW 

In  1925,   Prandtl (Ref. 2) made an important contribution to the 
theory of turbulent flow in the development of his mixing-length hy- 
pothesis.    For the case of near-parallel two-dimensional flow,   this 
hypothesis results in a relationship between the  shearing stress, the 
mixing length,   and the gradient of the velocity normal to the direction 
of the flow. 

Applying this result to the flow near a wall,   Prandtl assumed that 
the mixing length varied proportionally with the distance from the wall 
and that the  shearing stress was independent of the distance from the 
wall. 

i =  ity 

2 <2> T    =    T0   =   pv# 

The first of these assumptions follows from the fact that the mixing 
length must go to zero at the wall.    The  second assumption is  reason- 
able if the pressure gradient in the direction of flow is   small,   since 
for near-parallel two-dimensional flow, 

1   8p       8T 
 ar — 
p    8x       8y 

Substituting  Eq. 2 into Eq. 1  and integrating from ü = 0 to ü = u,   there 
is obtained 

u 1 
  = - (Iny -  lny0) (3) 

where y0 is the unknown distance from the wall,     where ü = 0.     Using a 
dimensional argument,   y0 must be proportional to v/v^.     Hence Eq. 3 
takes the following form: 

u         1          yv» 
    = _   In     +   C (4) 
v*        « v 

This is the logarithmic mean velocity distribution which is the "law of 
the >vaH" for two-dimensional,   incompressible flow. 

^ Since Eq. 3 is not applicable to the region very near the wall where 
the laminar stresses predominate (the laminar  sublayer),  it does not 
satisfy the boundary condition ü = 0 where y = 0. 
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The validity of Eq. 4 for flow past a wall was  substantiated by the 
experiments in  1940 of Schultz-Grunow (Ref. 3).    In these  experiments, 
the mean velocity profiles  and skin friction were measured for turbulent 
flow over a flat plate with no pressure gradient.    The data from the 
inner part of the boundary layer was found to be in good agreement with 
Eq. 4. 

An additional result of these experiments was that the deviation of 
the velocity profiles from Eq. 4 in the outer part of the boundary layer 
could be expressed quite accurately as a function of y/6 only.     Thus 
the mean velocity profiles for turbulent flow over a flat plate with no 
pressure gradient could be expressed as 

u          1         yv^ jy\ 
    = _ In      + C + F - j 
V* K V \ 6  / 

The fact that the Schultz-Grunow experiments were carried out with 
no pressure gradient made them consistent with the assumption used in 
developing Eq. 4 that the   Sr/Sy  is very  small.    The question therefore 
arose whether Eq. 4 would  also be valid for boundary layers developing 
in a strong pressure gradient where the   ör/Sy would no longer be  small. 
This question was answered by the experiments in  1949 of Ludwieg and 
Tillman (Ref. 4),   in which the mean velocity proliles and skin friction 
were measured for turbulent flow over a flat plate in both positive and 
negative pressure gradients.    Once again the data from the inner part 
of the boundary layer (excluding the laminar  sublayer and transition 
zone)  were found to be in good agreement with Eq. 4.    However,   the 
deviation of the velocity profiles from Eq. 4 in the outer part of the 
boundary layer was found to be no longer only a function of y/6 but also 
a function of the distance along the plate,   x.    Hence,  the mean velocity 
profiles for turbulent flow over a flat plate with a pressure gradient 
could be expressed  as 

ü 1 yv^ /y 
    =  — In     + C +  Fl— , x 
v^        K v \6 

In   1956,   Coles (Ref. 1)  investigated the  form of the function describ- 
ing the deviation from Eq. 4 of the velocity profiles in the outer portion 
of the boundary layer.    He  examined essentially all the  experimental 
data pertinent to the growth of two-dimensional turbulent boundary 
layers in a pressure gradient,   and determined that,  to a very close 
approximation,  this function of y/6 and x could be expressed as the 
product of a function only of x and a function only of y/6.     Thus Coles 
expressed the mean velocity profiles for two-dimensional turbulent 
boundary layers in the following form: 

u          1         yv^                  n(x)       /y 
    =  _ In    + C +   WJ- ) (5) 
V^ K V K \ 6 
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Coles refers to the function W(y/6) as the "law of the wake" since it 
represents the portion of the flow in the boundary layer that is charac- 
teristic of wake flow,   i. e. ,   essentially unaffected by T0.     The function 
W(y/6) is given in Table   1.     The profile parameter,   n,  together with v# 
determines the shape of the mean velocity profiles. 

TABLE 1.   Coles' 
Function 

Wake 

y/6 W y/6 W 

0.00 0.000 0.55 1.152 
0,05 0.004 0.60 1.307 
0.10 0.029 0,65 1.458 
0.15 0.084 0.70 1.600 
0.20 0.168 0.75 1.729 
0.25 0.272 0.80 1.840 
0.30 0.396 0.85 1.926 
0.35 0.535 0.90 1.980 
0,40 0.685 0,95 1.999 
0.45 0.838 1.00 2.000 
0.50 0.994 

THE TURBULENT THICKNESS AND SHAPE PARAMETER 

The fitting of analytical expressions for velocity profiles to experi- 
mental data is often done by requiring equal momentum thicknesses,   9 , 
and equal displacement thicknesses,   6*.    However,   for an expression 
of the form of Eq. 5 it if   much  more convenient not to work with 9   and 
6* directly but to make  use of the turbulent thickness.   A,   and the   shape 
parameter,   G,   utilized by Clauser (Ref. 5). 

6   U - u rb u - 

Jo V 
dy (6) 

r (^Mi) (7) 

It can easily be  shown that two velocity profiles having equal values of 
A,   G,   and v* also have  equal values of 0   ancl 6*, 
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DETERMINATION OF v*   FROM 
MEAN VELOCITY PROFILE 

Because of the apparent universal applicability of Eq. 4 to the inner 
part (excluding the laminar  sublayer  and transition  zone) of the turbulent 
boundary layer,   it may be used to make a reasonable estimate of the 
value of v^/ü if only the mean velocity profile is known.     Eq. 4 may be 
written as follows: 

"5 v^   1 v¥    1 v#        v^ 
—   = lny+ In     +   C 
U U    « U    « v U 

Taking the derivative with respect to In y, 

v# d(ü/U) 

U d(ln y) 
(8) 

By plotting u/U versus In y and determining the slope of the linear (or 
near-linear) inner portion of the profile,   the  value of v^/U is obtained. 

APPLICABILITY OF COLES' RESULT TO THE 
BOUNDARY LAYER ON A BODY OF 

REVOLUTION IN AXISYMMETRIC FLOW 

The boundary-iayer  equations for the axisymmetric flow over a body 
of revolution reduce to the equations for flow over a two-dimensional 
body as 6/r0 -* 0.     Hence,   the velocity profiles over the forward part 
of a body of revolution in axisymmetric  flow  where 6/r0 <<    1   should be 
almost identical to those found on a two-dimensional body.     However, 
over the after part of the body where 6/r0 is no longer small,   the de- 
viation of the velocity profiles  in the outer portion of the boundary- 
layer from the law of the wall,   Eq. 4,   might be expected to depend on 
5/r0 in such a fashion that Coles'  result,   Eq. 5,   for two-dimensional 
flow might not apply.     To test whether  Eq. 5 could adequately represent 
the mean velocity profiles for the  axisymmetric case,   the measured 
mean velocity profiles (Ref. 6, 7, 8) on the after part of several bodies 
of revolution were compared with Eq. 5. 

The comparison was carried out in the following manner.     Each 
profile was plotted as u/U versus In y and an estimate of v»/U was de- 
termined from  Eq. 8.     This value of v^/U and the curve^ of "ii/U versus 

Due to the lack of reliable data very near the wall,   the measured 
profiles were extended analytically to the wall using Eq. 4 and the  equa- 
tion for the flow in the laminar sublayer,   u/v* = yv^/v. 
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y were used in Eq. 6 and 7 to determine values of A and G by numerical 
integration.    Applying the boundary cond'.ionu = U when y =  6 to Eq. 5, 
there is obtained 

U        1        6v n 
    = _ In     + C + — W( 1) (9) 

Subtracting Eq. 5 from Eq. 9 yields, 

U - ü 1        y      n 
    =   ._ In -  + — 

v- <c 6 « i]\ W(l)  - W - (10) 

Substituting Eq. 10 into Eq. 6 and 7 and carrying out the integration,'* the 
terms involving  W(y/6) being integrated numerically using Table   1, 
there results 

K A 

1 +n 
, (H) 

i.szzn^ + (3.2oo - «on + z - Kc = o 

Equations   11 permit values of 6 and FI to be determined from the ex- 
perimentally obtained values of A and G.     Putting these values of 5 and 
II into Eq. 5 rewritten in the following form. 

where 

a direct comparison on the basis of ü/U versus y can be made between 
the experimental profiles and Eq. 5.     The comparisons are   shown in 
Fig. la - d.     The agreement is  sufficiently good that application of 
Coles'  result for two-dimensional flow,   Eq. 5,   to a body of revolution 
in axisymmetric flow appears  reasonably sound. 

u 

U 

v»    1       / yv^U        \         v#             v^ 
= In   Re|   +   C +   

U   K       xuu0      /        U            U 

xu0 
R      -   .. 

n    /y 
— w - 

6 

Ke 

4 
Since Eq. 5 or Eq. 10 does not hold in the  region very close to the 

wall (the laminar  sublayer and the transition zone),   the terms involving 
ln(y/6) give  rise to improper integrals.     These improper integrals 
are,   however,   convergent and the deviation of Eq. 5 or Eq. 10 from the 
true flow near the wall can be  shown to have an insignificant effect on 
the values of parameters such as  A and G. 
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l/40-Scale Akron Airship.



A 
NAVWEPS REPORT  85 10 

i.O   r- r r F" 

w.S 

.6  U 

a.4L 

Long   Body 
Station  83.8  inches  from  noso 

o   Mi-asurod valui;s 
   Eq. 5 

=0,151 

2.0  r- 

1.8  - 

1.6   _ 

1.4   - 

l.i   ^- 

1.0   — 

0.8 

0.6   ' 

0.4 

0      '     K- 

0.0 
0.0 0. 0.4 

ü/U 



.ong   Body 
tation  9 1  inchrs  from  nost 

= 0.195 

1 '' I 

0. ' 0.4 

p-jn.    WHi    i->„... 

0.6 

Q/U 
0.8 1.0 



1 \ I------- r



c
m

>s



G/u



BLANK PAGE 

-»-■«» feV?«' ^        »^ 



NAVWEPS REPORT  85 10 

AN ANALYTICAL APPROXIMATION TO EQUATION 5 

Coles'  expression for the mean velocity profiles,   Eq. 5,   has two 
drawbacks.     First,   it is not an analytical  expression  since  W(y/5)  is 
given  as a table of values  so that manipulations involving integration 
must be carried out in part by numerical integration.     Second,   it does 
not  satisfy the boundary condition at the  edge of the boundary layer 
that  9ü/9y -  0 when  y  -  6.     Although neither of these drawbacks  seri- 
ously impedes its usefulness,   it would be desirable to have  a simple 
analytical expression  amenable to  straightforward integration that 
would  closely approximate  Eq. 5 and also   satisfy the boundary condition 
du/dy  = 0 when y  =   5.     Such  an  repression was found in the  form 

Ü 1 yv^ A / y Vn        B / y 
    =   _ In      +C + —   -        +—   " 
v + * v <c  \ 6 / « \ 6 

(U) 

Applying the boundary condition 8u/8y = 0 when y -  6,   Eq. 12 becomes 

.m 

(13) 
u           1          yv^ A / y \n 

    =  _ In      +  C + —   - 
v»        « v K \ 6 

111.1 All 
»t \m        m     / \ 5 

The profile parameter A in  Eq. 13 plays  the  same  role as the profile 
parameter  11 in Eq. 5.     By choosing n  =  2.50  and m  = <J.75 in Eq. 13,   it 
very closely approximates  Eq.5.     A comparison between Eq. 13 and 
Eq. 5  showing this fact can be made as  follows. 

If Eq. 13 and  5  are both fit to the  same velocity profile,   the boundary- 
layer thickness,   6,   defined by Eq. 13 will not be  exactly equal to that 
defined by Eq.5.     To  avoid confusion,   from this point on,   a  subscript c 
will be  put on the boundary-layer thickness  defined by Coles'  Eq. 5 to 
differentiate  it from  the boundary-layer thickness defined by Eq. 13. 

Applying the boundary conditon u =  U when y 
tracting  Eq. 13 from this  result yields 

6 to  Eq. 13 and   sub- 

U - u 1 y        A 
    =   ._ In  -   +  — 

Vj, K 6 K 

y 1/1 n 
_   _   + _ A 
«  \m        m 

y 
14) 

Substituting  Eq. 10  into  Eq. 6 and 7 and  also Eq. 14 into  Eq. 6  and 7,   and 
carrying out the integrations,' there is obtained 

The  same comments made in footnote  4  concerning  Eq. 5  and   10 
apply to  Eq. 13 and   14. 

J 1 
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i +n 
A =  5, 

2 + 3.<iocn + i.szzn2 

«d + ri) 

G = 

0.7333 + 0.04762A 

1.406 + 0.1 162 A + 0.00 3297 A' 

«(0.7333 + 0.04762A) 

n = 2.50 
m = 2.75 

Specifying that both  profiles  have the  same values  of  A and G, the equa- 
tions  above allow the determination of A = f(n)  and  6/A = f(5c/A)   = f(n). 
With these  relationships known,   a direct comparison of Eq. 5 and   13 
can be  made.     In order to make this  comparison independent of the 
value of v^ ,   Eq. 5 and   13 are   rewritten in the following form. 

u           1          Av. 
 In   

i      y     n 
C  =  -ln—   + — Wl 

u 1          Av,, 
- In   -  C 

K A « \6/ K  \m       m      / \ 6 / 

(15) 

(16) 

The  comparison between  Eq. 15 and   16 is  shown in   Fig. 2a -  g for values 
of I! ranging  from 0.1  to 5.0,   a range that covers the values most com- 
monly encounterea in practice.     The  agreement is  excellent,   making it 
reasonable to use Eq. 13 and   14 in place of Eq. 5 and  10 in all subsequent 
analyses.     Although it is understood that n  =  2.50  and m  =  2.75,   the 
symbols  n and m are  retained in the  following work to  simplify the 
writing of expressions. 

COORDINATE SYSTEM 

The most convenient coordinate   system for analyzing the axisym- 
metric  flow over a body of  revolution is the orthogonal curvilinear 
system   shown in  Fig. 3.     Here,   x is  the distance  measured from the 
nose along the   surface of the body in a meridian plane; y is the distance 
from the   surface of the body measured along  an outward normal to the 
body  surface; y  is the  angular  position of   points  around the body; K 
denotes the curvature of the  body  surface in the meridian plane; and 
ß denotes the angle between a tangent to the body surface and the axis 

12 



BLANK PAGE 



+4.0 

+Z.0 

0.0 

u 
-1    -2.0 

> 
< 

1 'T 

n * o.i 
G = 5.307 
A = 4.840 

     Colea'   equation 
—  — —    Analytical approximation 

-4.0 

■3     -6.0 

8.0 

- 10.0 

12.0 
5.0 4.0 

/ 
S 

y 

A 

«c 

y     6 

A        A 

-L 

T T 

-3.0 

ln(y/A) 

(a) 

■i.O 

II  =  0.3 
G = 5.956 
A  = 9.754 

 L_J        1 i_   _ i 
-1.0 -5.0 -4.0 

FIG. 2.    Comparison of Coli-s'   Equation for 



NAVWEPS REPORT  HS 10 

A A 

// 

/      A        A 

A) 

II  =     0.6 
G =     6.981 
A =   16.7^ 

X 

1.0 -b.O 
J L 

A A 

/ V 6     I 

A A 

-4.0 
 L i. 

- i.O 

My/A) 

(<) 

-^.0 
1 . 
1.!) 

Velocity  Profiled   With   Analytical  Approximation. 



NAVWEPS REPORT  8510 

U 

< 

+ 4.0 

+ 2.0 

0  0 

1.0 

1            !             !             1            1 i 1                 1 

y 6c 
— = 
A A "^ 

-   II =     1.0 
G =     8.403 / 

- 

_   A = 25.76 
'■ X 

y     6 
 Analytical approximation 

/ A        A 

/ 

•ti- > 
i 3 

■4.0    [- 

-6.0 

-8.0 

- 10.0 

- 12.0 
5.0 

/ 
/ 

/ 
/ 

S 
-4.0 -3.0 

ln(y/A) 

(d) 

- 1.0 

FIG. 



n =   1.5 
G =  10.^ 
A » 36.92 

y 

A 

6c 

A 

/ 

y 

A 

6 

A 

/ 

/ 

-5.0 ■4.0 

(Contd. ) 

- 3.0 

ln(y/A) 

(•0 

-2.0 

J I 
1.0 



+Z0.0 

+ 15.0 

y    6 

+ 10.0 

u 

> 

+ 5.0 

•S        0.0 

« 
> 

5.0 

11 =     3.0 
G «   15.81 
A « 70.09 

Coles' equation 
 — Analytical approximation 

10.0 / 

-15.0  L_ 1 _L  
-4.0 

ln(y/A) 

(0 

._L 
3.0 2.0 

FIG. 2.   (( 



NAVWEPS REPORT 85 10 

n «      5.0 
G »    23.35 
A «  114.2 

/ 

y 

_L  
-5,0 

X 1 
-4.0 

In(yA) 

(g) 

._ J- 
3.0 2.0 

ntd.) 

IS 



NAVWEPS REPORT  85 10 

I 
r i 
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Center of curvature 

FIG. 3.   Curvilinear Coordinate System Used in Analysis. 

of symmetry.     The  scale factors" for this  curvilinear  system corre- 
sponding to the  coordinates x,   y,   and y   are 

1  + Ky 

hy  -   1 (17) 

hY   =   r  =   r0 + y cosß 

VECTOR OPERATIONS 

In  an orthogonal curvilinear  coordinate  system,   the operations  in- 
volving  the del,   V,   operator  take on  a form different from that  en- 
countered  in  a   rectangular   system."     For  an orthogonal  curvilinear 
system  with  coordinates xj,   x^,   X3  and  scale factors hj,   h^i   h3,   the 
folloving  expressions  are valid.' 

A discussion of curvilinear  coordinates may be  found in Ref. 9. 
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1    34»              1    d<f>              1    d4> 
y (f) = g r ad 4>   = —    e I + —  e 2 ^   e 3 

1 dx h2   8x2 h3   3x3 

1 
B  = divB = 

3 8 3 
 (h2h3B1) +  (h3h1B2)  +  {h1h2B3) 

hlh2h3l9xi 8x2 8x3 
(18) 

V X B  =  curlB 
h1h2h3 

hjej h2e2 

3x, 

hlBl 

8x2 

h>B 2Ö2 

h3e3 

8 

8x3 

h3B3 

In the above,   4>  is any scalar and B is any vector having components 
Bi,   B2.   B3 in the xj,   x2,   X3  system,   and ei,   e2,   and e3 are the unit 
vectors in the directions of increasing Xj,   X2f   and X3,   respectively. 
It  is of course understood that the xj,   X2,   X3  system is right-handed. 

THE NAVIER-STOKES AND CONTINUITY EQUATIONS 

The  equations governing the flow of an incompressible,   viscous 
Newtonian fluid are the Navier-Stokes and continuity equations.     For 
this incompressible case,   and neglecting gravitational forces,   these 
equations may be written (Ref. 10) as follows. 

8V      ^ _ 1       _      _ 1 _► 
 V X (V  X V)  + - V (V •   V)   =  -- Vp -   W X (V X V) 
8t 2 p 

(19) 
V  = 0 

In these  equations  V is the vector  velocity of the fluid and p is the 
static  pressure.     The  components of V in the  directions of increasing 
x,   y,   and \ will be denoted as  u,   v,   and w,   respectively. 

Expanding Eq. 19 using  Eq.  17,   and using  Eq. 18 with 

x 2   = x 

X2 = y 

X3 = Y 

hj = hx 

h2 = hy 
h3  = hv 

there is obtained 

17 
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(Flow along body) 

au 

at 

au        au 
— + V — + 

w au 
K +  

ar 

(1  + Ky)   ax 

1 

ay       { 1  + Ky) 

ap 

r   dy       r(l  + Ky)   ax 

p( 1  + Ky)  ax 

K        av 

a v cos p      av 

(1  + Ky)   axay       r(l  +  Ky)   ax 

K au        K cos ß K^ 
■u + 

(1  + Kyp  ax       (1  +  Ky)   ay       r( 1  + Ky) (1 + Ky)' 

a^u    cosp au      i   a^u i ar aw i azw 

ay' ay r2   dy1       r2(l + Ky)   ax  dy        r(i+Ky)   d*dy 

(Flow normal to  body) 

av av u 
  + v  +  
at dy      ( 1 + Ky) ax      r   ay 

av    w av    w u 
    + COS  ß  

r (1  + Ky) 
K 

i ap 

P 9y 

cos p aw     i a2w 
+ — 

i  a2v i a v 

-2      ay        r  ayay       r2  dy*       (1  + Ky)2   ax2 

ar av aK av K 9u aK 

r(l    +   Ky)2   ax ax       (1  + Ky)3  ax   dx       (1  + Ky)2   ax       (1 +Ky)2  ax 

uK ar uKy aK a'-u ar au 

r(l + Ky)2  ax      (1 + Ky)3ax        (1 + Ky)ayax       r(l+Ky)axay 

(Flow around body) 

u aw       w   aw 

at        r    ay        ( 1  +  Ky)  dx 

aw        aw uw        ar    vw 
    +   V     + +     CO s ß 

ay        r(l  +  Ky)   ax r 

1    dp 1 a^u i ar au a2r 

pr  ay [rd  + Ky)  ay ax       r2(l  + Ky)  ax ay       r( 1  + Ky)2  ax2 

ar aw wy aK ar 
 + 

Or 

r(l  + Ky)2  ax   ax       r( 1 + Ky)3  ax   ax       r2(l  + Ky)2 ax 

18 
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1 a2w 
f 

(1 

y            aK Bw 

+ Ky)3 ax  ax 

cos ß aw 

(1 + Ky)2 ax2 r      ay 

K cos p 
w 

cos2 

+  
r2 

ß       a2w K 

r) dy r(l + Ky) ay2 (1 + K^ 

+ 
i   a2v 
 + - 
r  fry ay 

K 

r(l + Ky) 

av 

ay 

COS P av 

ayJ r2 

(Continuity) 

au      u ar av (I + Ky)co8p (1 + Ky)  aw 
  + + (1 + Ky)  + vK + v + = 0    (20) 
ax      r ax ay r r ay 

REYNOLDS'  EQUATIONS 

Applying Reynolds'  procedure (Ref. 11) to Eq. 20,   the velocity com- 
ponents and pressure for the turbulent flow are considered as being 
made up of a mean component designated by a bar  and a fluctuation 
component designated by a prime. 

u = u + u' v="v + v' w=w + w' p = p + pl (21) 

A mean component is determined by a time-average at a fixed point in 
space,   so that 

irT=0 ■vT = 0 wT = 0 ^pT = 0 (22) 

Letting f and g be any two dependent variables and z be any inde- 
pendent variable,   the following rules for operating on a mean time- 
average apply. 

f  = f f + g  = f + g 
_ _ (23) 

       af     af 
ig'  ig — = — 

dz       dz. 

Restricting this development to the case of steady-state flow,   and  since 
the flow is axisymmetric,   the following relationships hold. 

aT dT _ 
— = 0   =0 w = 0 (24) 
at dy 

19 
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Substituting  Eq.2 1  into Eq. 20,   taking the  mean time-average of Eq. 20, 
and applying the  relationships  given in Eq.22,   23,   and  24,   the  Reynolds 
equations  for the axi symmet ri c ,   steady-state flow over  a body of revo- 
lution  arc obtained. 

(Flow  along  body) 

du du 
  + v  + 

du'Z       duW 
K + 

( 1 + Ky)   ax 9y      ( 1 + Ky) ( 1 + Ky)    Bx 9y 

,.2 ar 

r(l  + Ky)   ax      ( 1 + Ky) 

9p 

u'v' 
K +  cos ß 

,.2 ar 

p(l  +  Ky)  Bx 

a2v 

r(l  + Ky)   ax 

c o s ß     av K av 

(1  + Ky)   axay      r(l + Ky)   ax       (1  + Ky)^  ax 

K aü K cos ß K^ a2u    cos ß au 
u + u  - 

(1 + Ky) ay       r(l + Ky) (1 + Ky) 

(Flow normal to body) 

8v ü av" ü av 

dy< ay 

,2 au'v' 
K + 

ay       ( 1  + Ky)   ax       ( 1 + Ky) 

u'v' ar 

ay ( 1 + Ky)     ax 

,.2 ,.2 

K + 
r( 1 + Ky)  ax      ( 1  + Ky) 

i ap     f        i        a2v 

p 9y 

V" W' 

 K +   cos ß cos ß 
( 1 + Ky) r r 

ar av aK av 

.  (1 + Ky)2 ax^       r(l + Ky)2 ax ax      (1  + Ky)3  Bx   ax 

K aü aK ÜK ar üKy aK 

(1  + Ky)2  ax       (1 + Ky)2  Bx        r( 1 + Ky)2  ax       (1  +  Ky)3  ax 

1 a2ü ar au 

(1 + Ky)  ayax       r(l + Ky)   ax ay 

20 
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(Flow around body) 

1 au'w' 
 + , 
(1 + Ky)      8x 8y r(l + Ky)  8x      (1 + Ky) 

(Continuity) 

8Ü      u 8r Sv (1 + Ky)cosp 
  + + ( 1 + Ky)  + vK + v = 0 (25) 
8x      r  8x 8y r 

BOUNDARY-LAYER EQUATIONS 

In order to apply Eq. 25 in a practical manner to the solution of 
physical problems,   a great simplification is necessary.    This can be 
accomplished,  following after Prandtl (Ref. 12),   by considering the 
flow as composed of two regions:    a region close to the body where the 
viscous and turbulent stresses strongly affect the flow (the boundary 
layer)  and a region outside the boundary layer where the flow is essen- 
tially potential.    The fluid velocity in the x direction at the edge of the 
boundary layer is denoted as U,   and for elongated bodies of practical 
interest (excluding the  region around the nose where laminar flow nor- 
mally exists) there results 

U 
  = O(l) (26) 
Uo 

where U0 is the undisturbed free-stream velocity.     A length L may be 
defined by the relationship 

/8ÜV /Uo\ 
(27) 

For most practical problems,   the length,   L,   so defined will be of the 
order of magnitude of the length of the body and will satisfy the con- 
dition 

6 
— <<   1 (28) 
L 

The radius of curvature,   l/K,   of the body surface in the meridian plane 
will normally be of the order of magnitude of the body length over that 
portion (excluding the region around the nose where laminar flow nor- 
mally exists) of practical bodies that are in turbulent flow.    Hence it is 
not unreasonable to assume that 

21 
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K  - 0|-| U9) 
lL, 

Since  this development must be applicable to the  case where the 
boundary-layer thickness is not necessarily small compared to the 
body radius,   it must be assumed that 

r   = 0(6) (30) 

Applying Eq. 26 through   30,   and using the  normal order of magnitude 
considerations for determining the boundary layer  equations from the 
Navier-Stokes  equations,   the  relative magnitudes of the terms in  Eq. Z5 
involving the mean velocity components  can be determined.     However, 
such an analysis will tell nothing about the order of magnitude of the 
terms involving the mean time-average of the products and squares of 
the  fluctuation velocity components.     To obtain  some  idea of the magni- 
tude of these terms it is necessary to resort to  experimental data. 

Some of the most  reliable measurements  of the fluctuation velocity 
components  in a turbulent boundary layer approaching   separation have 
been made by Newman (Ref.  13).     Using  Eq. Z7,   an appropriate value 
of Li was determined for the   second  series  of tests  in Ref. 13.     The data 
from this  second  series was then analyzed and the following orders of 
magnitude determined. 

u'v" 
d" 

o 

6\ \U|/ /6 

*r-0\-J     -17r-°\-J      =0," 

u,2v 

u'2 /6\ \U^/ /6\ 
O-     =0-  —=0{l) (31) ü|     ^      il 

v'2 

°\-J 

v- /6 \ \Uf / /5 
= ol-\ Uo-     ^Of-I  —   =0(1) 

u'v'V 
d I 

"ll 
d f) \L 

d -
2I 

.";;) 

ly \ 
d - 
\L/ 

/ , v I2 

d( ̂ l 
ü°   ,L'    d'r)    ,L'    d(i 
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Since Newman's experiments did not include a measurement of w'^,   it 
was necessary to examine   some   other   data.      The   experiments   of 

Ref. 14,   15,   and   16 indicate that the values of w'^ tend to lie between 

those of v'^ and u'^.     Hence it is reasonable to assume that 

w'2 /6 

w'2\ 

^17 
a/1 

Ol- 

w,2l 

^1/ 

'(l) 

O(l) (32) 

With the addition of Eq. 31 and 32,   a complete order of magnitude 
analysis of Eq. 25 is possible.    In making  such an analysis,   it is cus- 
tomary to divide the first three parts of Eq. 25 by U^/L and the last 
part by U0/Li,   putting them in nondimensional form.     Since inertia and 
viscous effects are of the same order of magnitude in the boundary 
layer,   an examination of the inertia and viscous terms in this non- 
dimensional form  shows that 

v   =   O 
Uo62\ 

"/ 

All the terms will then be of the order of magnitude  1,   6/L,,   (ö/L)   , 
(6/L)    ,   (S/L)   .     Retaining only those terms of the order of magnitude 
1,   there results 

(Flow along body) 

_  ,11]        Jl)     8(JJ 
u       \uo/        v       \U0/ \pUg/ 

U0       /x\        U 

iz 0    8(1 

+   V 

r   a(ü/Uo) 

L   8(y/L) J 1 

•/L / y \ r/L 

r   u'v' 
81- 

L ui 
y 

dl- 

(33) 
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(Flow normal to body) 

Ü   >2 

r   v 
8(_- 

U, 

,2 

KL   - 
L U| u; 

r/L r/L 
cos ß   = 

pU^ 

a/1 
IL 

(Continuity) 

r/L 

r     u 
al  

L U0 

x 
31 — 

-/L 

fr      v 
31  

iL  U0 

'y 
of- 

,L 

(34) 

(35) 

The   equation for flow  around the body has  been dropped since it involves 
terms  containing only the fluctuation  velocities. 

Equation 34  expresses the  variation of  f^atic  pressure across  the 
boundary layer.     Integrating  Eq. 34 with  respect to  y/L. and taking  the 
partial derivative with   respect to x/l_,,   there  results 

pu^ 

a/1 
,L 

pU^/y-6 

fx 
31- 

lL 'Irl 

/.y/L 

Js/L 
KL 

L/ 

u   \Z    ly 
.    d| — 

r'Z 

U' 

31- 

y-y/L 

Js/L 
3(- 

,L 

cos p 
ly 

dl- 
iL 
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Equation 36 may now be substituted into Eq. 33; however,   the magnitude 
of the terms   should be  examined first.     The  first term on the  right side 
of Eq. 36 expresses the pressure gradient at the edge of the boundary 
layer arising from the  external,   essentially potential flow.     The  re- 
maining torms express the variation of the pressure gradient across 
the boundary layer.     An order of magnitude analysis of these remaining 
terms  shows'' that they are of the order ß/L.    Hence,   the  retaining of 
these  remaining terms in Eq. 36 when  substituting into  Eq. 33 would be 
inconsistent with the  approximation already made when terms of the 
order of ö/L were discarded in arriving at Eq. 33,     Therefore,   within 
the approximation of retaining terms of the order of magnitude   1  in the 
nondimensional Reynolds equations,   it may be assumed that the pres- 
sure is  constant across the boundary layer at the value  given by the 
external flow at the edge of the boundary layer (y   =6).     Since the  ex- 
ternal flow is  assumed to be essentially potential,   Bernoulli's  equation 
applies,   so that 

a|_L\     8_^-| df 
pU|/ \pu2/y=5 U       \U 'o 

x\ /x \ U0      /x 
8,i)   nil      dii 

Substituting the expression above into Eq. 33 and returning to dimen- 
sional form, the first-order boundary-layer equations for the turbulent, 
axisymmetric  flow over a body of revolution are obtained. 

/   an 
8   r_ 

aü 8Ü dU 1       \     8y/       1   SCru'v') 
ü  + v  = U  +  v  

8x 8y di. r 8y r 8y 

1   8(r'ü)        1   8(rv) 
 + = o 
r      8x r      8y 

(37) 

It has been pointed out by several investigators (e. g. ,   Ref. 13 and 
17) that the above first-order boundary-layer equations in their inte- 
grated form  (the momentum integral equation) do not yield satisfactory 
results in  a  strong adverse pressure gradient when the  shear  stress at 

This  result i.-  expected since the terms  in Eq. 34  are of the order 
of magnitude   1   so that an integration across the boundary layer with 
respect to y/L yield a variation in pressure across the boundary of the 
order 6/Li. 
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the wall is being determined from a knowledge of the pressure gradient 
and the velocity profiles.     It i s pointed out that certain terms of the 
order of 6/L (namely,   the turbulent normal  stress terms in the equation 
for flow along the body and the terms expressing the variation in pres- 
sure across  the boundary layer in the  equation for flow normal to the 
body) must be retained in the nondimensional Reynolds equation to yield 
anything approaching a satisfactory solution.     This is true,   because in 
a strong adverse pressure gradient,   the shear stress term is very 
small compared to the terms expressing the pressure gradient and the 
rate of change of the velocity profiles.    Hence,   the magnitude of a small 
term in an equation containing large terms is being  sought where a 
number of small terms have already been discarded from the equation. 
In effect,   the determination of a term of second-order  magnitude is 
being attempted using a first-order equation. 

In the present work,   it is planned to use the first-order boundary- 
layer equations to determine the  velocity profiles from  a knowledge of 
the pressure gradient and the  shear at the wall.    Thus a first-order 
effect is being  solved for using a first-order equation,   and there is 
good reason to believe that satisfactory results essentially to the point 
of  separation can be obtained. 

The expressions for the laminar   shear  stress,   T|,   and the turbulent 
shear  stress,   T^,   are 

9ü 

9y 
  (38) 

Tj    =    -pU'v' 

Letting T  equal thf- total  shear  stress (T = T, + T^) and substituting Eq.38 
into Eq. 37, there is obtained 

aer      ao"        du     i i au-r) 
Ü  + v — = U  +  (39) 

ax ay dx       p  r      ay 

1   a(rü)       1   8(rv) 
- ,  + = 0 (40) 
r     ax r      ay 

These are the first-order boundary-layer  equations in their most  com- 
pact form  for the axisymmetric flow over a body of revolution. 
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MOMENTUM INTEGRAL EQUATION 

The integration of Eq. 39 across (x = constant) the boundary layer 
(from y = 0 to y = 6) can be carried out by making use of the last of 
Eq. 17 and by using the continuity equation 40 to eliminate "v. There 
results 

der er dU      Or dr0       T0        / v^ \2 

+   (2   + Hr) + = 5=| —I (41) 
dx 

where 

dx U   dx       r0   dx        pU2      \ U 

Hr =  (42) 

/•ö   / u  \ cosß   fo   I u \ 

''L ('-üh*—X ('-ü)ydy 

Jrf> ü j       ü V           cos ß    rß "ü  /       "ü \ 
-l--dy+  -h.-ydy (44) 

o    U \ U / r0      Jo    U \ U / 

Equation 41  is the momentum integral equation for the axisymmetric 
flow over  a body of revolution.     5J and 6r must be looked upon as 
pseudo-displacement and pseudo-momentum thicknesses  since they do 
not  retain the physical significance their two-dimensional counterparts 
have.     If   l/r0 is  set equal to  zero in Eq. 41,   43,   and 44,   Eq.41  reduces 
t ■} the more familiar two-dimensional momentum integral equation of 
vonKarman (Ref. 18) and 6f and 0r   red   ce to the displacement thickness 
and momentum thickness of two-dimensional flow. 

ENERGY INTEGRAL EQUATION 

Another integral relationship can be determined from Eq. 39 by first 
multiplying Eq. 39 by u and then carrying out the  integration across the 
boundary layer in a manner  similar to that used in obtaining Eq.41. 
The resulting expression is 

d5** 
+ 3 

sr dU 
  + 
dx 

sr dro 

dx u ro dx 

2 r6 an 
= 

PU3 X T  —— 
ay 

:o8ß    rö      aü 

— I   T~ 
9ü 

ydy (45) 
pUJ     r0      J0        dy 
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where 

6** 
•6   u  /        u     \ cosß    /"ß   u / u^ Jro   u  I        u     \            cosß    ro  u I        u^ \ 

I       _l-_dy+    I      _l-—-ydy (46) 
o      U \ UZ I r0      Jo     U \ UZ/ 

Equation 45 is the  energy integral equation for the axi symmetric turbu- 
lent flow over  a body of revolution,   and  6r     is a pseudo-energy thickness 
since it does not retain the physical  significance of its two-dimensional 
counterpart.     If   l/r0 is  set equal to  zero in Eq. 45  and  46,   Eq. 45  re- 
duces to the two-dimensional  energy integral equation first proposed by 
Wieghardt (Ref. 19) in a slightly different form for laminar flow,   and 
6r*   reduces to the   energy thickness of two-dimensional flow.    A con- 
venient thickness   ratio to use  in  conjunction with the  energy integral 
equation is 

_ «r* 
Hr  =  (47) 

EVALUATION OF THE THICKNESS PARAMETERS 

Using the identities 

üKH'-;)-('-r 
u\      uzl      \      u /      \      u/      \      u 

the  expressions for the thickness parameters,   Eq. 43,   44,   and 46 may 
be written  in the following form. 
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6*      v»     /•!   U - ü   /y\      v»   6 /•!   U  -  u y    /y 
_=_    I       d-     + cos'3    / d- 
5       U   ./o        v^        \6l      U  r0 Jo       v*      6    \5 

v#     /•!   U - ü    / y \      v^    6 Z"1   U  -  u y    / y V 
_    I       d-    + cosß   / d- 
U   ^o        v^       \6/       U   r0 Jo        v#      6    \6/ 

6?* v^      W   U - ü    /y \ v„      5 Z*1   U - u y   /y\ 
  = 2—    I       d -      +2 cosß    I d - 

6 U   ^o v»        \ 5 / U     r0 Jo        v,,       6    \ 6 / 

3 

*{$ £ W3 m^ rr-1: W HI) 
Using the analytical approximation,   Eq. 14,   to Coles' two-parameter 
mean velocity profiles,   the integrals in the  expressions above may be 
evaluated (see Appendix).     The  expressions for Hr,   Hri   and 6 then 
become 
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61 
6 

Or 

6 

6 
Nj + AN^ + — co» 

Hr 
6 v.   If 

N i + AN2 +  co» p(N3 + AN4) IN5 + AN 
"•o U   .1 

6?" 

Hr = 
6 

Or 

6 

f 6 1  v» M 2       6 2      1  /' 2lNi + AN2+ co»P(N3+ AN4)I INs ♦ ANfc + A'N7 + cos ß<N8 + AN9 + A^N JQ)    +1- 
_ I 'o J      U   . I r0 J     \ 

« v.    If 
N j + AN2 + co» ß(N3 + N4) N5 + ANfc 

r0 U   «I 

er 

v.   If 6 
 N 1 + AN2 +  co» ß(N3 + N4) 
U   « I r0 (^h 

where   the   numerical   constants,   Nj  through   Nig,     are   given   in   the   Appe 
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JMfc + A2N7 +— cosßiNg + AN9 + A2Nio) 

(48) 

MM* 11 +AN 12 + A2Ni3+ A3Ni4+ co«p(Nj5 +AN l6 + A2Ni7 + A3Ni8)| 

6 + AiN7 + — cos P(Ng+ AN9 + A2N io)l 
'o J 

(49) 

N5 + ANfc + A2N7 + (Ng + AN9 + A2Nio) 

(50) 

endix. 



BLANK PAGE 

i    ii i um wmm 



NAVWEPS REPORT 8510 

THE SHEAR STRESS AT THE WALL 

The shear stress at the wall,   T0 =  pv^ .is  specified if the velocity 
at the edge of the boundary,  U,  the boundary-layer thickness,   6,   and 
the profile parameter.   A,   are known.    This is seen by applying the 
boundary condition u = U when y = 6 to Eq. 13. 

U        1 6v# 1 f    1 / n \ 1 
— =_ In   + C- + All ) 
V^K v «Im \ mil 

This equation can be put in a more useful form in which the boundary 
layer thickness,   6,   plays a secondary role by using Eq. 50.    The follow- 
ing implicit equation for v^ /U results. 

U        1 
  =- In 
Vo K 

eru i 
 + c +- 

V K 

.— + A 
m ^)1 

*    u 

U   r 

Ni + ANz +  cos P(N3 + AN4) 
r„ J 

N5 + AN6 + A^Ny +  cos P(N8 + AN9 + A' 
r« 

SNio)]) (51) 

DETERMINATION OF THE ENERGY DISSIPATION 

The two integrals 

pU3^o 

X6        8fü              2      cosß    z-6        8ü                 2       1     Z*6         an 
T  dy +      I       T  ydy =      I     rT  dy 

8y           pU-*     r0     Jo          dy             pU^   r0 Jo           dy 
(52) 

on the right side of the energy integral equation (45),   represent the rate 
at which organized kinetic energy in the boundary layer is dissipated in- 
to random kinetic energy (turbulence) and heat.    In order to evaluate 
these integrals,  a knowledge of the variation of the shear  stress,  T, 
across the boundary layer is needed.    This variation can be found by 
using a momentum integral equation in which the integration is not 
carried completely across the boundary layer (y = 0 to y = 6) but rather 
partially across the boundary layer (y = 0 to y = y).    Using the first- 
order boundary-layer equations,   39 and 40,  the incompletely integrated 
momentum integral equation takes the form 
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1 1 /»y   8(rü) 
dy 

Jo p p ./o        8x 

•y       8(rü) /-y 8ü dU Jfy     8(ru)            f-y        8u              du   /-y 
[      -Q   dy +   I      rü — dy - U    I       rdy (53) 
o 8x Ja 8x dx Jo 

+ 

This result reduces to the momentum integral equation 41,  if evaluated 
at y - 6. 

The question arises at this point whether the first-order equation 53 
can yield a reasonably good solution for the variation of T across the 
boundary layer or whether second-order effects must be included. 
Coles (Ref. 1) compared the variation in T across the boundary layer 
given by the two-dimensional form** of Eq. 53 with Newman's second 
series of tests (Ref. 13).    The integrals in the two-dimensional form of 
Eq. 53 were evaluated using the mean velocity profiles given by Eq. 5 
which had been fit to the experimental mean velocity profiles.     Coles 
found that the general behavior of T versus y was reasonably well pre- 
dicted but that both the boundary condition T = T0 when y = 0 and T = 0 
when y = 6 could not always be satisfied since the experimental data 
did not conform to the momentum integral equation at all points in the 
flow.    This noncomforr/iity was attributed primarily to a deviation of 
the flow from true two-dimensionality.    By a small alteration in the 
continuity equation.   Coles made the calculated values of T satisfy both 
boundary conditions and brought them in good agreement with the ex- 
perimental values.    Since it is planned to solve the momentum integral 
equation simultaneously with the energy integral equation,   Eq. 53 will 
satisfy both the boundary conditions T = T0 when y = 0 and T = 0 when 
y = 6,   and based on Coles' findings should give a satisfactory solution 
for T versus y. 

Substituting Eq. 53 into Eq. 52,  the energy dissipation integrals may 
be written,   dropping the multiplier Z/U$, 

1    fb       dU 1 cos p   />&       8ü 
ydy 

l    /•o       ou             i cos p    />o       öu 
_   I      T  dy + I      T  
p Jo       8y    p 'o Jo       8y 

J/-6 0ü     /•* /  8ü yy 8(rü)   \ 
f  _dy_ I   Ü— /   dy dy 
o  8y    ./o \  8y Jo      8x   / 

= — rnT 

( 

Jf6 I 9ü   fy      8(ru)       \ rb  I SU   fY 8ü       \ 
[ —   I     -Q dy dy+   /        —   1      rü—dy dy 
o    \ dy Jo 8x / Jo     \ By Jo 8x       / 

dU    /-ß / 8u    /.y \ 
. U     I             /      rdy dy       (54) 

dx   Jo   \ By Jo I 
 g  

The two-dimensional form of Eq. 53 is obtained by dividing through 
by r and letting r0 -* «. 
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Using the last of Fq. 17 and integration by parts,   Eq. 54 can be expanded 
into a form containing much  simpler integrals.     In this operation,   one 
approximation is indicated based on the previous order of magnitude 
analysis.     Differentiating the last of Eq. 17 with  respect to x,   there 
results 

8r      dro dp 
_—   s ——   - y sinß  
dx       dx dx 

But from Fig. 3 it is seen that 

dro dp 
sinß =  — = -I 

dx dx 
Therefore, 

8r      dr0 

(i + yK) 
8x       dx 

But ymax = 6 and K= 0( l/L)  so that yK = 0<6/L1),   and since 6/L. <<   1 
it follows that 

8r       dro 
— ar  
dx        dx 

Equation 54 then takes on the following form in which the multiplier 
Z/\5* has been reintroduced and y has been nondimensionalized by 6. 

i.        so       au Z     co s p     /»O       ÖU 
 _    I      T dy +    /      T ydy 
pU3 Jo        8y           pU3     ro     Jo dy 

Z-TQ      6  dr0    r1*    /y\ 6    f1 du   ly 

pU2     r0   dx    J0    U    \ 6 / U X    8x   \ 6 

r0              UJo    8x6    \6/ r0   dx   ./0    \ U /      \6/ 

6     z*1 / ü v2 0u    / y \ 6               6      /•! / ü i2  an 

V Jo   \ul     8x    \ 6 / ro              V Jo    \ U /     8x 

Jo    \Ul \6l          U Jo     U 8x    \6 

6   dro 
+ 2  

r0  dx 
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+ 4 
6              6     /»lu  Buy   /y\         6  dU    /•!    /y 

— cosß-   / d-    -2 /     d- 

6  dU  6 Z"1 Y   /y\ 6 dU    /»lu    /yl 
 cosp   I    _d-l+2 I    —d(- 
U dx  ro Jo    6   \il Udx  Jo    U    \6i 

6 dU  6 Z*1 ü y   / y \ 
+ 2 cosp    I d-        (55) 

U dx  r0 Jo    V 6   \6l 

The OTr/8x is readily determined from Eq. 13. 

8u      u   U   dv^       1 dv# 

8x      U vu   dx        K   dx 

v#/dA     And6Wy\n 

« \dx        6   dx/U/ 

v^ f    n   dA     (1 + An) d61/y\m 

— +  (56) 
K   I   m dx 6 dxj\6/ 

Using Eq. 56 and the following identities, 

u v# / U - u 

U U 

X[ v2 „    ni - — \      i.,. v2 ijj _ 17 »2 

1  -  2 
U/ -  •    v* 

all the integrals on the right side of Eq. 55 may be put into the form 

•1   /U - ü\qi .   . 
(q = integer) r i^rm) 

These integrals may be evaluated using Eq. 14 (see Appendix) and yield 
the final expression for the energy dissipation integrals. 
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    I      T—dy + I     T  
pU3 J0 dy pU3     r0      Jo        8y 

' v# \^ 6    dvw   1 
21—      + 2  

U / U     dx    K 
Nj + AN2 +  co8p(N3 + AN4) 

v»   1 f 5 / 5       V 5 
+ [Ni - -N5 + A  N2 - -N6j  - A2 _N7 

U   « 2 \ 2       / 2 

+  cos p N3 --N8 + AJN4 --N9j   -  A2-N1o 

+ -[—]    —JNu- N5 + A(N12 - N6) + A2(N13 - N7) + A^^ 

+  cosßCNjs  - N8 + A(Nl6 - N9) + A2(N17 - N^) + A3N18)I 
Tn I 

v#   1 f n / n \ 
 JNig N23 + A   N20  - —N24 
U   « I m \ ml 

dA v^ 6 
+ 2  

dx   U   * 

6              f                n 
+  cosß  N21 N25 + A(N22 

3/v^V2    1   f n 

+  cosß —N36 - N30 + A —N37  - 1431\  + A' —N38 - N32 
m m 

d6 v#  1 
+ 2  

dx U  K 

v»   1 
 JN23 + A(N24 + nN23 - nN19) + A2(nN24 - nN2o) 
U 

+  co8p[N25 + A(N26 + nN25 - n^) +*AZ{nNzb - nHZ2)]\ 
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+ -[—j     —  -N33 + A(nN27 - nN33 - N34) 

+ A2(nN28 - nN34 - N35) + A3(nN29 - nN35) 

6 
+  cosp[-N36 + A(nN30 - nN36 - N37) 

ro 

+ A2(nN31 - nN37 -  N38) + A3(nN32 - nNjg)] 

+ (-N5 - AN6 - AZU7) 
r0   dx     U   « l U    « 

/ v# \
2   1 

+          — (Nu + AN^ ^ A^N^ + A3NM) 
U 

6  dU   v#   1 

U dx    U   « 
• Nj  - AN2 +  cosp(-N3 - AN4) (57) 

where the numerical constants Nj through N38 are given in the Appendix 
and n and m are regarded as equal to 2.50 and 2.75,   as mentioned pre- 
viously.     Also the  substitution TQ/P^     = (V#/U)2 has been made. 

THE BOUNDARY-LAYER SOLUTION 

Equations 41,   42,   45,   47,   48,   49,   50,   51,   and 57 constitute a set of 
nine differential,   algebraic,   and transcendental equations in the nine 
unknowns: 

er 

6* 

Hr 

6** 

Hr 

6 

v„ 

r 2      ccs p    >»6       9u 
 I T     
«U3     r0    J0 dy 

•6      80" 2     cosp   >»6       d\x 
T  dy + /      T  ydy 

pU^ Jo dy 
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It is assumed the pressure distribution at the outer  edge of the boundary 
layer U = f(x) and the body shape  l/r0 = f(x)  are known.     A solution of 
these equations for   l/r0 / 0 is a first-order  solution tor the turbulent 
boundary layer on a body of revolution in axisvmmetric flow.     For 
l/r0 =  0,   it is  a first-order  solution for the turbulent flow on a two- 
dimensional body.     As brought out earlier in the development,   both 
solutions  are restricted to the  case where the  radius of curvature,   l/K, 
of the body surface in the direction of flow is  large  compared to the 
boundary-layer thickness. 

An iterative method for obtaining  a simultaneous  solution of these 
nine equations is under development,   and programming of the iterative 
method on the IBM 7090  will be undertaken in the near future. 

To commence  such an iterative solution,    starting values of 9r ,   Hr, 
and x must be known.     Starting values of 9r and x may be determined 
from a laminar boundary-layer solution from the stagnation point to 
the transition point.     The Pohlhausen method  (Ref. 20) offers a conven- 
ient way of obtaining the  laminar  solution   since it may be applied in  a 
simple approximate form to both the two-dimensional body (Ref. 2 1) 
and the body of revolution (Ref. 22).     A reliable starting value of Hr is 
not easily obtained because of the scarcity of information on the change 
of this thickness ratio through transition,   particularly in a pressure 
gradient.     It is necessary,   therefore,   to determine a starting value of 
Hr by some rather uncertain means such as is  suggested in Ref. 23 and 
24.     This is admittedly a weak link in the boundary-layer  solution. 

THE DISPLACEMENT THICKNESS ON A BODY 
OF REVOLUTION 

For the axisymmetric flow on a body of revolution, 61. 's a pseudo- 
displacement thickne ss, as mentioned earlier. It does not represent 
the increase in the body dimension (normal to the surface) that would 
displace the streamlines of a totally potential flow around the body by 
the same amount they are displaced as a result of the retardation of 
the flow in the boundary layer. The true displacement thickness, 6*, 
which does represent this condition, is detrrmined, as pointed out by 
Granville (Ref. 25) by the relation 

1 + 

6* = 

/—i : 
/l +  2    cos p 6r 

y       ro 

1 
— cos ß 
ro 

In the limit as   l/r0 -*  0,   the  equation above yields  6     =  6r,   which  is the 
expected  result from the definition of 6r. 
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It is often customary to compute the potential pressure distribution 
around a body increased in dimension by the displacement thickness. 
This is done to account for,   in part,   the effect of the boundary layer on 
the potential flow outside the boundary layer.     To carry out this calcu- 
lation,   the values of 6* are needed. 

DISCUSSION AND CONCLUSIONS 

Although most of the development leading from the Navier-Stokes 
equations to the momentum and energy integral equations can be found 
in various references,   it was included in this report in order to empha- 
size the  assumptions  and  restrictions underlying the first-order 
boundary-layer equations and to give a line of unbroken continuity to 
the development. 

The foregoing development has  shown that the use of Coles' univer- 
sal,   two-parameter,   mean velocity profiles made possible a scheme 
for obtaining an essentially exact solution of the first-order turbulent 
boundary-layer equations in integrated form.     This was possible be- 
cause these profiles inherently contain sufficient information to deter- 
mine not only the shear stress at the wall but also the variation of 
shea-    stress across the boundary   layer,    making possible the determi- 
nation of the rate of energy dissipation in the boundary layer.     Due to 
tne fairly rigorous development of this method and the fact that velocity 
profiles can be accurately represented essentially to the point of sepa- 
ration,   it is anticipated that an improved technique for estimating the 
inflow velocity profiles to propellers and the skin-friction drag of 
bodies of revolution will result. 
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Appendix 

EVALUATION OF INTEGRALS 

The development in the body of this  report   reqiires the  evaluation 
of integrals of the  form 

rrai; •1 /U   - üyq/y VS    /y 

v „     /    i 5 /      \ 6 
(q   -   integer) 

using  Eq.  14 (repeated below) 

U  - ü 1 y       A 
   ^  __ In - + — 

V» K 6 K 

J 11         n      \ y \ - - — + — A 1   - - 
K \m       m \ 5 / 

(14) 

where n  -  2.5U  and m  =   2.75.     These  integrations  are   straightforward 
but they are rather long  and tedious when q is  greater than one.     In 
carrying out these  integrations,   the  terms  involving  In(y/!>)  lead to 
improper  integrals   since   Eq. 14 does  not properly describe the  flow  in 
the  region very near the  wall.     These  improper integrals   are,   how- 
ever,   convergent,    and the  effect on the  value  of these  integrals due  to 
the  deviation  from  the true flow  in the transition  zone  and  laminar   sub- 
layer is not  significant. 

•!   U   -  u    / y 
K    I        d(-| = N1 + AN<> 

'o vw \6 

1    U   -   u   y     jy 
*.    | d - I - Ni + AN4 

f •'o 

/ 
Ju v „,       5     \ 6 

N5 +   AN6  +  A^Ny 

•1 / U   - ü\Z  y y 

6    \6 
-dl-   I  - N8 + AN9 +  A^-Njo 
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Xl/U-ü3    I y 
I       dl-     = Nu + AN12 + A2Ni3 + A3Ni4 
\     v#     /      \6/ 

XI / U  - ü \3  y    /y V 
        -d-    =N15 + ANi6 + A2N17 + A^Njg 

\     v^      /     6    \6/ 

■£ 

.1 / U - ü \3 

•1   U - ü / v\2.50 

U   -   U / yV3.50      ly 

y^.^u      /y 
d -I = N19 + ANZo 

• I   U - u /y v3.75    ly 
*   I          - d - I = N25 + AN.,^ 

•1 / U - ü\Zl v\2.50 
«c 

/•'   U   -   U / y VJ.50     ly 

1          - d-    =N21 + AN22 
•Jo v ^    \ 6 / \ 6 / 

/l   U  -u/yV^.TS    ly 
    - d-     = N23 + AN24 

v^     \5 / 6 / 

l 

x 
2r(^r(-:r'H-:) 

27 + AN28+ A2N29 

«2   /         -)(-| d|-     - N30 + AN31 + A2N32 
*     ,    ,6/ \6 

1 /U  - ü \2/v v2.75 
J'     '      "33 + AIN34 + -^"^35 

'o     \     v#     /  \6/ \6- 
*Z   I                - d -     = N,, + AN,4 + A2N 

•1  /U - ü\2/y v3.75 
«-   I      I  I   1- 1 d|- I - N36 + AN37 + A2N38 

where 
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N20 - 0,004761904 

N21 = 0.018731375 

N22 = 0.002736728 

N23 = 0.030085470 

N24 = 0.004102564 

N25 = 0.0 16251 154 

N26 r 0.002419842 

N27 = 0,0 16054940 
N28 = 0.003292518 

N29 = 0.000186741 

N30 = 0.005999780 

N3J = 0.001405893 

N32 = 0.000088639 

N33 = 0.012292719 

N34 = 0.002619501 

N35 = 0.000153119 

N36 = 0.004834318 

N18 = 0.000051483 N37  = 0.001163109 

Njg  - 0.035918367 N38 = 0.000074911 

These values  are doubtful in the last one or two significant digits. 

Nl = 0,733333334 

N2 = 0.047619048 

N3 = 0.144736842 

N4 =  0.014619884 

N5 =   1.406495726 

N6 = 0.116197456 

N7 - 0.003296703 

Ns = 0.128485687 

N9 = 0.018400596 

NiO = 0.000792209 

Nu - 4.182609023 

N12 = 0.36895053 

N13 = 0,0 1447839 

N14 = 0.00025215 

N15 = 0.185477054 

Ni6 -   0.030226715 

N17 = 0.001986392 
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ADDENDUM 

It should be pointed out that an additional condition must be imposed 
on the turbulent boundary-layer solution.     Experimental  evidence  shows 
that for  flow on a flat plate with zero pressure gradient,   the profile 
parameter 11 in Eq. 5 or the profile parameter A in Eq. 13  remains 
essentially a constant.     This fact was first noted by Schultz-Grunow 

dA (Ref. 3).     Therefore,   the solution must yield  -,— =  0 for  A =  Flat plate 

value,   -3— = 0,   and    «■ 0   = 0.      (The flow  on a  cylinder of constant radius 

is  similar to that on a flat plate if  <<   1. )    This   requirement of the 

solution can be obtained by adding a correction term to the energy dis- 
sipation function. 

A discussion of this point had been postponed for a future  report 
since it was not certain in what form the correction term would be in- 
corporated into the  solution,   and the computer program that would be 
required to investigate  the various  possibilities was not available when 
NAVWEPS Report 8510 was  published.     However,    it was  completely 
overlooked that the application of this   requirement to the  solution was 
not only desirable but was  essential to make the  equations  independent. 
The fact that the  equations  mentioned on page  36  contain a redundancy 
was pointed out in a  communication from Dr.  G.   E.  Gadd of the National 
Physical  Laboratory,   Teddington,    England.     Since the variation of T 
across  the boundary layer  used in the  energy integral equation was 
determined from the partially integrated momentum equation,   the 
momentum and energy  integral equations are not independent.    A more 
complete discussion of this area will appear in a forthcoming  report 
that will present  the method used to solve the  equations and  comparisons 
of computer  solutions with exoerimental data. 

5 May  1965 
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